10. 已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且
-=λ-,-λ-(λ为非零参数,n=2,3,4,…)
(Ⅰ)若x1,x3,x5成等比数列,求参数λ的值;
(Ⅱ)当λ>0时,证明--(n∈N*);
当λ>1时,证明-+-+…+-0,λ>0→yn>0
-λ-λ2-…λn-1-
∴-λn-1→--
∴--
(Ⅲ)由已知 x1=x2=1,y1=y2=2,y3λy2,x3=λx2 又λ>1,∴y3>x3
进一步易推得 yn>xn
-=-,yn+1-xn+1λn-1yn-λn-1xn=λn-1(yn-xn)>0
--
--=-
∴--,(n2)
-+-+…+-1+-+…+-0,g(x)↑,
∴x=x0是g(x)唯一极小值点。
∴g(x)>g(x0)=0,即g(x)>0
∴f‘(x)>0,f(x)↑
单调区间(-∞,x0)∪(x0,+∞)
上面是把数列转化为函数,下面还要把函数转化为数列。
令x0=an,an
∴--
∴kn
注:数列也是函数,用处理函数的思路,与方法也适用于数列,关键是抓住“转化”的转折点。
2008年物理复习:巧用能量守恒定律
天津四十二中学 杨震
[例2]:如图所示,传送带与水平地面夹370,以恒定的速率v0=2m/s运行。把一个质量为10kg的物体轻放在传送带底端,物体被运送到高为h=2m处,物体与传送带的动摩擦因数μ=0.866,不计其他摩擦以及能量损失,求:
(1)此过程产生的内能是多少?
(2)此过程中拉动传送带的电动机消耗的电能是多少?
解:(1)分析:首先,木块在滑动摩擦力和重力下滑分量的作用下做匀加速运动,末速度为v0,木箱的对地位移为s,相对滑动的时间为t则:
a=μgcos370-gsin370 v02=2as ,t=-
E内=fs相对=f(v0t-s)
(2)由能量转化观点,电动机输出能量转化成物体的动能,摩擦生热和物体的重力势能
E=-mv02+mgh+fs相对
[例3]:(2007学年度北京市东城区高三期末教学目标抽测)
如图所示,光滑水平面上有一质量M=4.0kg的带有圆弧轨道的平板车,车的上表面是一段长L=1.0m的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的-光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧放置,小物块与水平轨道间的动摩擦因数μ=0.5。整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A。取g=10m/s2,求:
(1)小物块到达A点时,平板车的速度大小;
(2)解除锁定前弹簧的弹性势能;
(3)小物块第二次经过O′点时的速度大小;
(4)小物块与车最终相对静止时,它距O′点的距离。
解:分析:此题物体的受力多为变力,运动过程也很复杂,紧紧抓住能量的转化关系便可将复杂问题简单化。
(1)平板车与小物块组成的系统水平方向动量守恒,故到达圆弧最高点A时两者共同的速度为0
-=λ-,-λ-(λ为非零参数,n=2,3,4,…)
(Ⅰ)若x1,x3,x5成等比数列,求参数λ的值;
(Ⅱ)当λ>0时,证明--(n∈N*);
当λ>1时,证明-+-+…+-0,λ>0→yn>0
-λ-λ2-…λn-1-
∴-λn-1→--
∴--
(Ⅲ)由已知 x1=x2=1,y1=y2=2,y3λy2,x3=λx2 又λ>1,∴y3>x3
进一步易推得 yn>xn
-=-,yn+1-xn+1λn-1yn-λn-1xn=λn-1(yn-xn)>0
--
--=-
∴--,(n2)
-+-+…+-1+-+…+-0,g(x)↑,
∴x=x0是g(x)唯一极小值点。
∴g(x)>g(x0)=0,即g(x)>0
∴f‘(x)>0,f(x)↑
单调区间(-∞,x0)∪(x0,+∞)
上面是把数列转化为函数,下面还要把函数转化为数列。
令x0=an,an
∴--
∴kn
注:数列也是函数,用处理函数的思路,与方法也适用于数列,关键是抓住“转化”的转折点。
2008年物理复习:巧用能量守恒定律
天津四十二中学 杨震
[例2]:如图所示,传送带与水平地面夹370,以恒定的速率v0=2m/s运行。把一个质量为10kg的物体轻放在传送带底端,物体被运送到高为h=2m处,物体与传送带的动摩擦因数μ=0.866,不计其他摩擦以及能量损失,求:
(1)此过程产生的内能是多少?
(2)此过程中拉动传送带的电动机消耗的电能是多少?
解:(1)分析:首先,木块在滑动摩擦力和重力下滑分量的作用下做匀加速运动,末速度为v0,木箱的对地位移为s,相对滑动的时间为t则:
a=μgcos370-gsin370 v02=2as ,t=-
E内=fs相对=f(v0t-s)
(2)由能量转化观点,电动机输出能量转化成物体的动能,摩擦生热和物体的重力势能
E=-mv02+mgh+fs相对
[例3]:(2007学年度北京市东城区高三期末教学目标抽测)
如图所示,光滑水平面上有一质量M=4.0kg的带有圆弧轨道的平板车,车的上表面是一段长L=1.0m的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的-光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧放置,小物块与水平轨道间的动摩擦因数μ=0.5。整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A。取g=10m/s2,求:
(1)小物块到达A点时,平板车的速度大小;
(2)解除锁定前弹簧的弹性势能;
(3)小物块第二次经过O′点时的速度大小;
(4)小物块与车最终相对静止时,它距O′点的距离。
解:分析:此题物体的受力多为变力,运动过程也很复杂,紧紧抓住能量的转化关系便可将复杂问题简单化。
(1)平板车与小物块组成的系统水平方向动量守恒,故到达圆弧最高点A时两者共同的速度为0
看的慢、看不懂,如何提升阅读效率
投资小、见效快,学习能力培训加盟
↓↓↓更好阅读体验(字体格式、相关链接)